Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
MAbs ; 14(1): 2005507, 2022.
Article in English | MEDLINE | ID: covidwho-1585297

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibody Affinity/immunology , Antibody Specificity/immunology , CHO Cells , COVID-19/prevention & control , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Clone Cells , Cricetinae , Cricetulus , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Isoelectric Point , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
2.
Sci Rep ; 10(1): 16615, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834915

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) is a highly virulent pathogen that causes Middle East Respiratory Syndrome (MERS). Anti-MERS-CoV antibodies play an integral role in the prevention and treatment against MERS-CoV infections. Bioactivity is a key quality attribute of therapeutic antibodies, and high accuracy and precision are required. The major methods for evaluating the antiviral effect of antiviral antibodies include neutralization assays using live viruses or pseudoviruses are highly variable. Recent studies have demonstrated that the antibody-dependent cellular cytotoxicity (ADCC) activity of antiviral antibodies is more consistent with the virus clearance effect in vivo than neutralization activity. However, no reports evaluating the ADCC activity of anti-MERS antibodies have been published to date. Here, we describe the development of a robust and reliable cell-based reporter gene assay for the determination of ADCC activity of anti-MERS antibodies using 293T/MERS cells stably expressing the spike protein of MERS-CoV (MERS-S) as target cells and the engineered Jurkat/NFAT-luc/FcγRIIIa stably expressing FcγRIIIA and NFAT reporter gene as effector cells. According to the ICH-Q2 analytical method guidelines, we carefully optimized the experimental conditions and assessed the performance of our assay. In addition, we found that the ADCC activity of afucosylated anti-MERS antibodies is higher than their fucosylated counterparts. The establishment of this ADCC determination system provides a novel method for evaluating the bioactivity of anti-MERS antibodies and improving ADCC activity through modification of N-glycosylation of the Fc segment.


Subject(s)
Antibodies, Viral/analysis , Antibody-Dependent Cell Cytotoxicity/immunology , Coronavirus Infections/immunology , Cytotoxicity Tests, Immunologic/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/virology , Genes, Reporter , HEK293 Cells , Humans , Jurkat Cells , Luciferases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , NFATC Transcription Factors/genetics , Receptors, IgG/genetics , Receptors, IgG/immunology , Response Elements , Spike Glycoprotein, Coronavirus/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL